Brain stimulation might help some functions and hurt others

FacebooktwitterlinkedinFacebooktwitterlinkedin

http://www.technologyreview.com/news/511916/brain-boosting-technique-might-help-some-functions-while-hurting-others/

Electrically stimulating the brain may improve memory, but impede with a person’s ability to react without thinking.

The approach has previously been shown to enhance various brain functions, including working memory and attention, and is being used to help stroke patients regain lost language and motor skills (see “Repairing the Stroke-Damaged Brain”). But until now, little research had been done on whether improving performance on one task would come at the detriment of others.

The Relationship of Sugar to Population-Level Diabetes Prevalence

FacebooktwitterlinkedinFacebooktwitterlinkedin

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0057873

Increased sugar consumption leads to increased diabetes prevalence. One solution is to reduce sugar consumption, but this is difficult to implement in a western diet. It is best to combine the consumption of  high fiber foods such as oatmeal, oat bran, beans and legumes with the consumption of high sugar foods.

Computer modeling may help soldiers, athletes, avoid concussions

FacebooktwitterlinkedinFacebooktwitterlinkedin

http://hub.jhu.edu/2013/03/07/concussion-research-impact

Johns Hopkins engineers have developed a powerful new computer-based process that helps identify the dangerous conditions that lead to concussion-related brain injuries.

Professor K.T. Ramesh led a team that used a technique called diffusion tensor imaging, together with a computer model of the head, to identify injured axons, which are tiny but important fibers that carry information from one brain cell to another. These axons are concentrated in a kind of brain tissue known as “white matter,” and they appear to be injured during the so-called mild traumatic brain injury associated with concussions. Ramesh’s team has shown that the axons are injured most easily by strong rotations of the head, and the researchers’ process can calculate which parts of the brain are most likely to be injured during a specific event.

Doctors use smartphones to save lives

FacebooktwitterlinkedinFacebooktwitterlinkedin

http://appleinsider.com/articles/13/01/25/doctors-see-apples-iphone-as-life-saver-in-the-future-of-medicine

A doctor recently used his iPhone, in combination with AliveCor, a mounted sensor capable of delivering clinically accurate electrocardiograms, while in flight, to measure the vital signs of a passenger experiencing severe chest pains at 30,000 feet.

The results indicated that the passenger was having a heart attack.  The doctor recommended an urgent landing, and the passenger survived after being rushed to the hospitall

NASA technology benefits cardio-pulmonary patients

FacebooktwitterlinkedinFacebooktwitterlinkedin

http://www.azosensors.com/news.aspx?newsID=5350

PUMA measures six components to evaluate metabolic function: oxygen and carbon dioxide partial pressure, volume flow rate, heart rate, and gas pressure and temperature. From those measurements, PUMA can compute the oxygen uptake, carbon dioxide output and minute ventilation (average expired gas flow rate). A small, embedded computer takes readings of each sensor and relays the data wirelessly to a remote computer via Bluetooth.

Apps aim to detect skin cancer

FacebooktwitterlinkedinFacebooktwitterlinkedin

http://online.wsj.com/article/SB10001424127887323783704578245973988828066.html#

Researchers from the University of Pittsburgh Medical Center tested four apps to analyze images of 188 moles, including 60 melanomas. All of these moles were pre-evaluated by a dermatologist.

The best-performing app forwarded the images to board-certified dermatologists to review at cost of $5 per mole, and claims to be accurate 98% of the time.  Some are skeptical.  We are sure that we will soon see a proliferation of early, at home detection apps.