Category Archives: Wearables

Hypoallergenic, continuous, week-long health wearable

FacebooktwitterlinkedinFacebooktwitterlinkedin

University of Tokyo professor Takao Someya has developed a hypoallergenic, adhesive, continuous health sensor. The device can be worn comfortably for a week because of its nanoscal mesh elastic electrodes.  This allows the skin to breathe, preventing inflammation.

The electrodes contains a  biologically compatible,  water-soluble polymer, polyvinyl alcohol, and a gold layer. The wearable  is applied by spraying a tiny amount of water, which dissolves the PVA nanofibers, and allows it to stick easily to the skin. It conforms to curvilinear surfaces of human skin, such as sweat pores and the ridges of an index finger’s fingerprint pattern.

A study of 20 subjects wearing the device showed that  electrical activity of muscles were comparable to those obtained through conventional gel electrodes.  There was no inflammation after one week, and repeated bending and stretching did not cause damage, making this a potentially disruptive method to monitor health and performance.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston on September 19, 2017 at the MIT Media Lab – featuring  Joi Ito – Ed Boyden – Roz Picard – George Church – Nathan Intrator –  Tom Insel – John Rogers – Jamshid Ghajar – Phillip Alvelda – Michael Weintraub – Nancy Brown – Steve Kraus – Bill Geary – Mary Lou Jepsen – Daniela Rus

Registration rates increase Friday, July 21st

Adhesive patch + nose wearable detect sleep apnea

FacebooktwitterlinkedinFacebooktwitterlinkedin

Somnarus has developed a disposable, adhesive patch that detects obstructive sleep apnea at home.

The SomnaPatch is worn on the forehead, wth an addtional piece on the nose. It records nasal pressure, blood oxygen saturation, pulse rate, respiratory effort, body position and how long a patient is asleep.

An 174-patient study showed that results from the SomnaPatch matched standard in-lab polysomnography 87% of the time.

If the device is proven effective in larger studies, it could be a cheaper, more comfortable alternative to lab-based sleep studies.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston on September 19, 2017 at the MIT Media Lab – featuring  Joi Ito – Ed Boyden – Roz Picard – George Church – Nathan Intrator –  Tom Insel – John Rogers – Jamshid Ghajar – Phillip Alvelda – Michael Weintraub – Nancy Brown – Steve Kraus – Bill Geary – Mary Lou Jepsen

Preferred registration rates available through Friday, June 9th.

Earbud sensor reportedly measures blood pressure, dehydration

FacebooktwitterlinkedinFacebooktwitterlinkedin
As health sensors become more discreet, and fused with commonly worn devices, Kyocera has integrated a tiny, optical sensor into its earbud.  The hybrid music/phone/health use wearable measures blood flow in hypodermal tissues using Laser Doppler velocimetry. It can monitor nerve and blood pressure, levels of dehydration, and possible signs of heat stroke.  Sleep monitoring can be done more accurately than with current devices, and the effect of music on brain states can also be studied.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston on September 19, 2017 at the MIT Media Lab. Featuring Joi Ito – Ed Boyden – Roz Picard – George Church – Nathan Intrator –  Tom Insel – John Rogers – Jamshid Ghajar – Phillip Alvelda

REGISTER BY MAY 19TH AND SAVE $500

Sweat sensor for cystic fibrosis detection, drug optimization, glucose monitoring

FacebooktwitterlinkedinFacebooktwitterlinkedin

Carlos Milla, Ronald Davis, and Stanford and Berkeley colleagues have developed a wearable sweat sensor for detecting cystic fibrosis, diabetes and other diseases.  It can also aid drug development and personalization, and continuously monitor patients.

The flexible sensor/microprocessor system adheres to the skin, stimulates sweat glands, and detects the presence of molecules and ions based on electrical signals.  Increased chloride generates increased electrical voltage at the sensor’s surface.  High levels of chloride ions indicate cystic fibrosis.

Conventional methods for diagnosing cystic fibrosis require a visit to a specialized center, where a patient does not move for 30 minutes, while electrodes stimulate their sweat glands. A lab then measures chloride ions in the sweat to diagnose the disease. This method hasn’t changed in 70 years.

The wearable sweat sensor stimulates skin to produce minute amounts of sweat, quickly evaluates the contents, and sends the data via phone, to the cloud, for immediate analysis.   The system is portable and self-contained, and ideal for use in children, and in underserved communities.

As CF is caused by hundreds of different mutations in the CF gene,  it’s possible to use the sensor to determine which drugs work best for which mutations.

The device was also used to compare levels of glucose in sweat to that in blood.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston on September 19, 2017 at the MIT Media Lab. Featuring Joi Ito – Ed Boyden – Roz Picard – George Church – Tom Insel – John Rogers – Jamshid Ghajar – Phillip Alvelda – Nathan Intrator

 

Verily’s health sensing research watch

FacebooktwitterlinkedinFacebooktwitterlinkedin

The  Verily Study Watch passively captures health data for continuous care platforms and clinical research. Key features described by the company include:

  • Multiple physiological and environmental sensors are designed to measure relevant signals for studies spanning cardiovascular, movement disorders, and other areas. Examples include electrocardiogram (ECG), heart rate, electrodermal activity, and inertial movements.
  • A long battery life of up to one week in order to drive better user compliance during longitudinal studies.
  • Large internal storage and data compression allow the device to store weeks’ worth of raw data, thus relaxing the need to frequently sync the device.
  • A powerful processor supports real time algorithms on the device.
  • The firmware is designed to be robust for future extensions, such as over-the-air updates, new algorithms, and user interface upgrades.
  • The display is always on so that time is always shown. The display is low power and high resolution for an appealing look and a robust user interface. Note: currently, only time and certain instructions are displayed. No other information is provided back to the user.

The watch will be used in Verily’s current and forthcoming studies, such as the  Personalized Parkinson’s Project, meant to track progression, and the Baseline study, meant to understand transitions between health and disease.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston – Featuring: Joi Ito, Ed Boyden, Roz Picard, George Church, Tom Insel, John Rogers, Jamshid Ghajar, Phillip Alvelda and Nathan Intrator – September 19, 2017 at the MIT Media Lab

Apple reportedly developing non-invasive glucose monitor

FacebooktwitterlinkedinFacebooktwitterlinkedin

CNBC’s Christina Farr has reported that Apple has been quietly developing a non-invasive, sensor-based glucose monitor.  The technology has apparently advanced to the trial stage.

Diabetes has become a global epidemic.  Continuous monitoring, automatic insulin delivery, and the “artificial pancreas” are significant steps forward, meant to control the disease, and avoid its debilitating side effects.  While some systems consist of micro-needles just below the skin, to date, none are totally non-invasive.

The ideal solution would be the use of the Apple Watch and other fitness/lifestyle trackers to control behavior to the point that the disease is avoided entirely.  However, if diagnosed, a non-invasive glucose sensor would transform the daily life of diabetics.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston – Featuring: Joi Ito, Ed Boyden, Roz Picard, George Church, Tom Insel, John Rogers, Jamshid Ghajar, Phillip Alvelda and Nathan Intrator – September 19, 2017 at the MIT Media Lab

Future hearable sensors could track physical, emotional state

FacebooktwitterlinkedinFacebooktwitterlinkedin

Apple has filed patent applications describing wireless earbuds that monitor health while a wearer talks on the phone or listens to music.  This has obvious exercise-related implications, but could potentially track the physiological impact of one’s emotional state while making calls, as a mobile mental health tool.

Sensors included in the patent include EKG, ICG, VO2 and GSR.

Click to view patent applications:

Patent 1   |   Patent 2   |   Patent 3


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston – Featuring Roz Picard, Tom Insel, John Rogers and Nathan Intrator – September 19, 2017 at the MIT Media Lab

Sensor, data, and AI-driven primary care

FacebooktwitterlinkedinFacebooktwitterlinkedin

Forward has brought advanced technology to well-care.

Patient/Members are integrated into the practice with a baseline  screening via body scans, blood and genetic tests.  They are then given consumer and medical wearables, which work with proprietary algorithms, for continuous monitoring (and access to data), personalized treatment, and emergency alerts. Physical exam rooms display all of the data during doctor visits,

Ongoing primary care, including continuous health monitoring, body scans, gynecology, travel vaccinations, medication, nutrition guidance, blood tests and skin care is included in the fee-based system.

Forward investor Vinod Khosla will be interviewed by ApplySci’s Lisa Weiner Intrator on stage at Digital Health + NeuroTech at Stanford on February 7th at 4:15pm.

ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis

 

Consumer wearable + medical monitor track exercise’s impact on glucose

FacebooktwitterlinkedinFacebooktwitterlinkedin

Consumer wearables can complement medical devices by integrating activity data into a disease management strategy.

Fitbit movement data will now be used with a Medtronic diabetes management tool, with the goal of users predicting the impact of exercise on glucose levels.

Diabetics can monitor glucose with Medtronic’s iPro2 system continuously for 6 days. Fitbit data will integrated into the  iPro2 myLog app. Users will no longer need to log daily activity on paper, and the information is easily shared with physicians and caregivers.

ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis

 

Multiple wearable sensors predict illness

FacebooktwitterlinkedinFacebooktwitterlinkedin

Stanford’s Michael Snyder has published the results of a health wearable study, in which 2 billion measurements were taken from 60 subjects, concluding that such devices can be used to predict illness.

Continuous biosensor data, plus blood chemistry, gene expression and other tests,  were included. Participants wore 1-7 commercial wearables, which collected more than 250,000 measurements per day. Weight, heart rate, blood oxygen level, skin temperature, sleep, walking, biking and running, calories expended, acceleration, and exposure to gamma rays and X-rays were analyzed.

To individualize the process, both baseline and illness values were established for each person. It was possible to monitor deviations from normal, and associate those deviations with environmental, illness or other factors that affect health.  Deviation patterns correlated with specific health problems.  (The lead author was able to detect Lyme Disease in himself during the study.) Algorithms which spot these patterns could be used for future diagnostics or research.

ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis