Category Archives: Sensors

Graphene sensor detects asthma attacks early

FacebooktwitterlinkedinFacebooktwitterlinkedin

Azam Gholizadeh, Clifford Weisel, and Rutgers colleagues have created a graphene sensor for early molecular diagnosis of asthma attacks.  The goal is the development of wearables that will alert users to take medicine, as well as determine appropriate dosages.

Current non-invasive detection methods, such as spirometry, are limited in characterizing the nature and degree of airway inflammation, and require expensive, bulky equipment.

The miniaturized electrochemical sensor measures nitrite in exhaled breath condensate using reduced graphene oxide. Its rapid measurements can help asthma sufferers  determine if air pollutants are affecting them, to  better manage their medication and physical activity, and, hopefully, prevent complications, hospitalizations, and even deaths.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston on September 19, 2017 at the MIT Media Lab – featuring  Joi Ito – Ed Boyden – Roz Picard – George Church – Nathan Intrator –  Tom Insel – John Rogers – Jamshid Ghajar – Phillip Alvelda – Michael Weintraub – Nancy Brown – Steve Kraus – Bill Geary

REGISTER BY JUNE 9 AND SAVE $400

 

Earbud sensor reportedly measures blood pressure, dehydration

FacebooktwitterlinkedinFacebooktwitterlinkedin
As health sensors become more discreet, and fused with commonly worn devices, Kyocera has integrated a tiny, optical sensor into its earbud.  The hybrid music/phone/health use wearable measures blood flow in hypodermal tissues using Laser Doppler velocimetry. It can monitor nerve and blood pressure, levels of dehydration, and possible signs of heat stroke.  Sleep monitoring can be done more accurately than with current devices, and the effect of music on brain states can also be studied.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston on September 19, 2017 at the MIT Media Lab. Featuring Joi Ito – Ed Boyden – Roz Picard – George Church – Nathan Intrator –  Tom Insel – John Rogers – Jamshid Ghajar – Phillip Alvelda

REGISTER BY MAY 19TH AND SAVE $500

Transparent, stretchable lens sensor for diabetes, glaucoma detection

FacebooktwitterlinkedinFacebooktwitterlinkedin
UNIST professors Jang-Ung Park, Chang Young Lee and Franklin Bien, and KNU professors Hong Kyun Kim and Kwi-Hyun Bae, have developed a contact lens sensor to monitor biomarkers for intraocular pressure, diabetes mellitus, and other health conditions. Several attempts have been  made to monitor diabetes via glucose in tears.  The challenge has been poor wearability, as the electrodes used in existing smart contact lenses are opaque, obscuring  one’s view.  Many wearers also complained of significant discomfort from the lens-shaped firm plastic material. The research team addressed this by developing a sensor based on transparent, stretchable, flexible materials  graphene sheets and metal nanowires. This allowed the creation of lenses comfortable and accurate enough for eventual self-monitoring of glucose levels and eye pressure. Patients can transmit their health information through an embedded wireless antenna in the leans, allowing real-time monitoring  The system uses  the wireless antenna to read sensor information, eliminating the need for a separate power source.

Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston on September 19, 2017 at the MIT Media Lab. Featuring Joi Ito – Ed Boyden – Roz Picard – George Church – Tom Insel – John Rogers – Jamshid Ghajar – Phillip Alvelda – Nathan Intrator

Wall sensor monitors walking speed, stride to track health

FacebooktwitterlinkedinFacebooktwitterlinkedin

MIT’s Dina KatabiChen-Yu Hsu, and colleagues have developed WiGait, a wall sensor that detects walking speed and stride to monitor health. This builds on previous MIT research which showed that radio signals could track breathing and heart rate, without wearables.

The  system works by transmitting low-power radio signals and analyzing how they reflect off  bodies within a radius of 9 to 12 meters. Machine learning algorithms separated walking periods from other activities and found the stable phase within each walking period.  The sensor, when combined with wearable devices, could also track Parkinson’s and MS symptoms, and help predict health events related to  heart failure,  lung disease, kidney failure, and stroke, as well as the risk of falls. Caregivers could also be notified in emergencies.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston on September 19, 2017 at the MIT Media Lab. Featuring Joi Ito – Ed Boyden – Roz Picard – George Church – Tom Insel – John Rogers – Jamshid Ghajar – Phillip Alvelda – Nathan Intrator

Sweat sensor for cystic fibrosis detection, drug optimization, glucose monitoring

FacebooktwitterlinkedinFacebooktwitterlinkedin

Carlos Milla, Ronald Davis, and Stanford and Berkeley colleagues have developed a wearable sweat sensor for detecting cystic fibrosis, diabetes and other diseases.  It can also aid drug development and personalization, and continuously monitor patients.

The flexible sensor/microprocessor system adheres to the skin, stimulates sweat glands, and detects the presence of molecules and ions based on electrical signals.  Increased chloride generates increased electrical voltage at the sensor’s surface.  High levels of chloride ions indicate cystic fibrosis.

Conventional methods for diagnosing cystic fibrosis require a visit to a specialized center, where a patient does not move for 30 minutes, while electrodes stimulate their sweat glands. A lab then measures chloride ions in the sweat to diagnose the disease. This method hasn’t changed in 70 years.

The wearable sweat sensor stimulates skin to produce minute amounts of sweat, quickly evaluates the contents, and sends the data via phone, to the cloud, for immediate analysis.   The system is portable and self-contained, and ideal for use in children, and in underserved communities.

As CF is caused by hundreds of different mutations in the CF gene,  it’s possible to use the sensor to determine which drugs work best for which mutations.

The device was also used to compare levels of glucose in sweat to that in blood.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston on September 19, 2017 at the MIT Media Lab. Featuring Joi Ito – Ed Boyden – Roz Picard – George Church – Tom Insel – John Rogers – Jamshid Ghajar – Phillip Alvelda – Nathan Intrator

 

Verily’s health sensing research watch

FacebooktwitterlinkedinFacebooktwitterlinkedin

The  Verily Study Watch passively captures health data for continuous care platforms and clinical research. Key features described by the company include:

  • Multiple physiological and environmental sensors are designed to measure relevant signals for studies spanning cardiovascular, movement disorders, and other areas. Examples include electrocardiogram (ECG), heart rate, electrodermal activity, and inertial movements.
  • A long battery life of up to one week in order to drive better user compliance during longitudinal studies.
  • Large internal storage and data compression allow the device to store weeks’ worth of raw data, thus relaxing the need to frequently sync the device.
  • A powerful processor supports real time algorithms on the device.
  • The firmware is designed to be robust for future extensions, such as over-the-air updates, new algorithms, and user interface upgrades.
  • The display is always on so that time is always shown. The display is low power and high resolution for an appealing look and a robust user interface. Note: currently, only time and certain instructions are displayed. No other information is provided back to the user.

The watch will be used in Verily’s current and forthcoming studies, such as the  Personalized Parkinson’s Project, meant to track progression, and the Baseline study, meant to understand transitions between health and disease.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston – Featuring: Joi Ito, Ed Boyden, Roz Picard, George Church, Tom Insel, John Rogers, Jamshid Ghajar, Phillip Alvelda and Nathan Intrator – September 19, 2017 at the MIT Media Lab

Apple reportedly developing non-invasive glucose monitor

FacebooktwitterlinkedinFacebooktwitterlinkedin

CNBC’s Christina Farr has reported that Apple has been quietly developing a non-invasive, sensor-based glucose monitor.  The technology has apparently advanced to the trial stage.

Diabetes has become a global epidemic.  Continuous monitoring, automatic insulin delivery, and the “artificial pancreas” are significant steps forward, meant to control the disease, and avoid its debilitating side effects.  While some systems consist of micro-needles just below the skin, to date, none are totally non-invasive.

The ideal solution would be the use of the Apple Watch and other fitness/lifestyle trackers to control behavior to the point that the disease is avoided entirely.  However, if diagnosed, a non-invasive glucose sensor would transform the daily life of diabetics.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston – Featuring: Joi Ito, Ed Boyden, Roz Picard, George Church, Tom Insel, John Rogers, Jamshid Ghajar, Phillip Alvelda and Nathan Intrator – September 19, 2017 at the MIT Media Lab

Solar powered, highly sensitive, graphene “skin” for robots, prosthetics

FacebooktwitterlinkedinFacebooktwitterlinkedin

Professor Ravinder Dahiya, at the University of Glasgow, has created a robotic hand with solar-powered graphene “skin” that he claims is more sensitive than a human hand.  The flexible, tactile, energy autonomous “skin” could be used in health monitoring wearables and in prosthetics, reducing the need for external chargers. (Dahiya is now developing a low-cost 3-D printed prosthetic hand incorporating the skin.)

Click to view University of Glasgow video


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston – Featuring Roz Picard, Tom Insel, John Rogers, Jamshid Ghajar and  Nathan Intrator – September 19, 2017 at the MIT Media Lab

 

Future hearable sensors could track physical, emotional state

FacebooktwitterlinkedinFacebooktwitterlinkedin

Apple has filed patent applications describing wireless earbuds that monitor health while a wearer talks on the phone or listens to music.  This has obvious exercise-related implications, but could potentially track the physiological impact of one’s emotional state while making calls, as a mobile mental health tool.

Sensors included in the patent include EKG, ICG, VO2 and GSR.

Click to view patent applications:

Patent 1   |   Patent 2   |   Patent 3


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston – Featuring Roz Picard, Tom Insel, John Rogers and Nathan Intrator – September 19, 2017 at the MIT Media Lab

Soft, flexible “skin-like” electrodes could improve brain interfaces

FacebooktwitterlinkedinFacebooktwitterlinkedin

Stanford professor Zhenan Bao‘s latest flexible electronic initiative is the development of a plastic electrode that stretches like rubber but carries electricity like wires. This could be improve implanted brain interfaces which require soft and highly sensitive materials.

In a recent paper, Bao’s team describes the chemical modification of  brittle plastic to make it highly bendable, while enhancing  electrical conductivity. A more seamless connection between stiff electronics and flexible organic electrodes in our bodies is achieved.

According to lead author Yue Wang, “One thing about the human brain that a lot of people don’t know is that it changes volume throughout the day, It swells and deswells.”  Current electronic implants can’t stretch and contract with the brain, making it difficult to maintain a good connection.

Click to view Stanford University video.


Professor Bao was the keynote speaker at ApplySci’s recent Wearable Tech + Digital Health + NeuroTech conference at Stanford.

Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston – Featuring Roz Picard, Tom Insel, John Rogers and Nathan Intrator – September 19, 2017 at the MIT Media Lab