Magnetic coils might improve neural prostheses

FacebooktwitterlinkedinFacebooktwitterlinkedin

Neocortex stimulation is used to treat neurological disorders, including Parkinson’s disease and paralysis. Current electrode-based implants have limited efficacy. It is difficult to create precise patterns of neural activity, or to achieve consistent responses over time.  This can be addressed by magnetic stimulation, but until now, coils small enough to be implanted into the cortex were not thought strong enough to activate neurons. Shelley Fried at Harvard has created a microcoil design that  has been effective for activating cortical neurons and driving behavioral responses.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston – Featuring Roz Picard, Tom Insel, John Rogers and Nathan Intrator – September 19, 2017 at the MIT Media Lab

Sensors inform skilled nursing care

FacebooktwitterlinkedinFacebooktwitterlinkedin

IBM has partnered with Avamere skilled nursing facilities to sudy the use of cognitive computing to improve caregiver knowledge and actions. By embedding sensors that gather physical and environmental data in  senior living facilities, Avamere hopes to reduce hospital admission rates.

Patient movement, air quality, gait analysis and other fall risk factors, personal hygiene, sleeping patterns, incontinence and trips to the bathroom will be monitored. IBM will  analyze the data to create an understanding of each patient, and be able to predict and hopefully prevent negative outcomes.

One Avemere company, Infinity Rehab, already integrates sensor – derived health data in physical, occupational, and speech therapy protocols.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston – Featuring Roz Picard, Tom Insel, John Rogers and Nathan Intrator – September 19, 2017 at the MIT Media Lab

Robots support neural and physical rehab in stroke, cerebral palsy

FacebooktwitterlinkedinFacebooktwitterlinkedin

Georgia Tech’s  Ayanna Howard has developed Darwin, a socially interactive robot that encourages children to play an active role in physical therapy.

Specific targeting children with cerebral palsy (who are involved in current studies),  autism, or tbi, the robot is designed to function in the home, to supplement services provided by  clinicians.  It engages users as their human therapist would — monitoring performance, and providing motivation and feedback.In a recent experiment, motion trackers monitored user movements as Darwin offered encouragement, and demonstrated movements when they were not performed correctly.  Researchers claimed that wth the exception of one case, the robot’s impact was “significantly positive.

Darwin is still evolving (pun intended) and has not yet been commercialized.

At MIT,  Newman Lab researcher Hermano Igo Krebs has been using robots for gait and balance neurorehabilitation in stroke and cerebral palsy patients since 1989.  Krebs’s technology continues to be incorporated into  Burke Rehabilitation hospital treatment plans.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston – Featuring Roz Picard, Tom Insel, John Rogers and Nathan Intrator – September 19, 2017 at the MIT Media Lab

Sensor detects HIV in first week of infection

FacebooktwitterlinkedinFacebooktwitterlinkedin

Spanish National Research Council researchers have developed a biosensor that detects the p24 antigen protein at concentrations 100,000 times lower than in current techniques. This has enabled the creation of  a test that can detect HIV in the blood within one week of infection. It takes 5 hours, offering results the same day.

The inexpensive sensor combines micro-mechanical silicon structures and gold nanoparticles. Current antigen tests can detect HIV three weeks after infection. RNA tests can detect the virus in 10 days, but cost much more.

According to CSIC researcher Priscila Koska, “The potential for HIV infectivity in the first stage of infection is much higher than in the later stages. Therefore, initiating antiretroviral therapy prior to seroconversion improves immune control and has been associated with benefits in CD4 cell count, a reduction in systemic inflammation, the preservation of cognitive function, and a reduction of the latent reservoir. Logically, its detection is critical to the prevention of HIV transmission.”


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston – Featuring Roz Picard, Tom Insel, John Rogers and Nathan Intrator – September 19, 2017 at the MIT Media Lab

MRI, algorithm predict autism before behavioral symptoms appear

FacebooktwitterlinkedinFacebooktwitterlinkedin

UNC’s Heather Hazlett has published a study showing that an overgrowth in brain volume, determined by MRI scans during the first year of life, forecasts whether a child at high risk of developing autism.

The goal is to give parents the opportunity to intervene long before behavioral symptoms become obvious, which usually occurs between ages 2 and 4.

The study was small, and further research is needed before it can be developed into a diagnostic  tool.

Two groups were studied: 106 high-risk  infants, with an older sibling with autism, and 42 low-risk infants, with no family history. MRI measurements of overall volume, surface area and thickness of the cerebral cortex in certain regions were done at set times between 6 and 24 months. An overgrowth of cortical surface area in infants later diagnosed with autism, compared with the typically developing infants, was discovered.

The researchers then developed an algorithm that predicted autism, based on brain measurements. Approximately 80% of the 15 high-risk infants who would later meet the criteria for autism at 24 months. Using the algorithm, the team also accurately predicted which babies would not develop autism by age 2.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston – Featuring Roz Picard, Tom Insel, John Rogers and Nathan Intrator – September 19, 2017 at the MIT Media Lab

Dopamine sensor tracks single neurons

FacebooktwitterlinkedinFacebooktwitterlinkedin

MIT’s  Michael Strano has developed a carbon nanotube based detector that can track single cells’ secretion of dopamine. Using 20,000 sensor arrays, the team monitored dopamine secretion of single neurons, allowing them better understand dopamine dynamics.

Unlike most other neurotransmitters, dopamine can exert its effects beyond the synapse. Not all dopamine released into a synapse is taken up by the target cell, allowing some of the chemical to diffuse away and affect other nearby cells. Tracking this dopamine diffusion in the brain has proven difficult. Neuroscientists have tried using specialized electrodes, but only 20 of the smallest electrodes can be placed near any given cell.

The carbon nanotube sensors used in this study are coated with a DNA sequence that makes the sensors interact with dopamine. When dopamine binds to the carbon nanotubes, they fluoresce more brightly, allowing the researchers to see exactly where the dopamine was released. The researchers deposited more than 20,000 of these nanotubes on a glass slide, creating an array that detects any dopamine secreted by a cell placed on the slide.

According to Strano: “We have falsified the notion that dopamine should only be released at these regions that will eventually become the synapses,” Strano says. “This observation is counterintuitive, and it’s a new piece of information you can only obtain with a nanosensor array like this one.”


Join ApplySci at Digital Health + NeuroTech Boston – September 19, 2017 at the MIT Media Lab

Toward a speech-driven auditory Brain Computer Interface

FacebooktwitterlinkedinFacebooktwitterlinkedin

University of Oldenburg student Carlos Filipe da Silva Souto is in the early stages of developing a brain computer interface that can advise a user who he/she is listening to in a noisy room.   Wearers could focus on specific conversations, and tune out background noise.

Most BCI studies have focused on visual stimuli, which typically outperforms auditory stimuli systems, possibly because of the larger cortical surface of the visual system.  As researchers further optimize classification methods for auditory systems, performance will be improved.

The goal is for visually impaired or paralyzed people to be able to use natural speech features to control hearing devices.

ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis

 

 

 

 

AI assistant addresses specific needs of seniors

FacebooktwitterlinkedinFacebooktwitterlinkedin

ElliQ is AI assistant that intuitively interacts with seniors to support independent living.

The NLP based system enables users to make video calls, play games, and use social media. Music, TED talks, audio books,and other content is recommended, after machine learning tools analyze user preferences (or caregiver input is received.)  Physical activity is suggested after a long period of sitting is detected.  Medication reminders can be scheduled.

The robot is meant to act as a companion, to address loneliness, which is an epidemic amongst the elderly.  It could be further enhanced if memory triggers, anxiety-reducing content, and custom instructions about activities of daily living were incorporated.

ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis

3D-bioprinted human skin can replace animal testing, potentially be used in burns

FacebooktwitterlinkedinFacebooktwitterlinkedin

José Luis Jorcano at Universidad Carlos III de Madrid has developed a 3D bioprinter capable of replicating the structure of skin. The human-like  skin that is produced  includes an epidermal layer that protects against the environment, and a collagen-producing dermis that provides elasticity and strength.

The bioink material  contains human plasma, and  primary human fibroblasts and keratinocytes obtained from biopsies.

Currently, 100 cm2 of the printed skin  is able to be produced in 35 minutes.

ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis

Sensor, data, and AI-driven primary care

FacebooktwitterlinkedinFacebooktwitterlinkedin

Forward has brought advanced technology to well-care.

Patient/Members are integrated into the practice with a baseline  screening via body scans, blood and genetic tests.  They are then given consumer and medical wearables, which work with proprietary algorithms, for continuous monitoring (and access to data), personalized treatment, and emergency alerts. Physical exam rooms display all of the data during doctor visits,

Ongoing primary care, including continuous health monitoring, body scans, gynecology, travel vaccinations, medication, nutrition guidance, blood tests and skin care is included in the fee-based system.

Forward investor Vinod Khosla will be interviewed by ApplySci’s Lisa Weiner Intrator on stage at Digital Health + NeuroTech at Stanford on February 7th at 4:15pm.

ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis