Sensor, data, and AI-driven primary care

Facebooktwitterredditlinkedinmail

Forward has brought advanced technology to well-care.

Patient/Members are integrated into the practice with a baseline  screening via body scans, blood and genetic tests.  They are then given consumer and medical wearables, which work with proprietary algorithms, for continuous monitoring (and access to data), personalized treatment, and emergency alerts. Physical exam rooms display all of the data during doctor visits,

Ongoing primary care, including continuous health monitoring, body scans, gynecology, travel vaccinations, medication, nutrition guidance, blood tests and skin care is included in the fee-based system.

Forward investor Vinod Khosla will be interviewed by ApplySci’s Lisa Weiner Intrator on stage at Digital Health + NeuroTech at Stanford on February 7th at 4:15pm.

ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis

 

Machine learning tools predict heart failure

Facebooktwitterredditlinkedinmail

Declan O’Regan and MRC London Institute of Medical Sciences colleagues believe that AI can predict when pulmonary hypertension patients require more aggressive treatment to prevent death.

In a recent study,  machine learning software automatically analyzed moving images of a patient’s heart, captured during an MRI. It then used  image processing to build a “virtual 3D heart”, replicating how 30,000 points in the heart contract during each beat. The researchers fed the system data from hundreds of previous patients. By linking the data and models, the system learned which attributes of a heart, its shape and structure, put an individual at risk of heart failure.

The software was developed using data from 256 patients with pulmonary hypertension. It correctly predicted those who would still be alive after one year 80% of the time. The figure for doctors is 60%.

The researchers  want to test the technology in other forms of heart failure, including cardiomyopathy, to see when a pacemaker or other form of treatment is needed.

Click to view MRC London video.

ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis

 

 

Consumer wearable + medical monitor track exercise’s impact on glucose

Facebooktwitterredditlinkedinmail

Consumer wearables can complement medical devices by integrating activity data into a disease management strategy.

Fitbit movement data will now be used with a Medtronic diabetes management tool, with the goal of users predicting the impact of exercise on glucose levels.

Diabetics can monitor glucose with Medtronic’s iPro2 system continuously for 6 days. Fitbit data will integrated into the  iPro2 myLog app. Users will no longer need to log daily activity on paper, and the information is easily shared with physicians and caregivers.

ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis

 

Multiple wearable sensors predict illness

Facebooktwitterredditlinkedinmail

Stanford’s Michael Snyder has published the results of a health wearable study, in which 2 billion measurements were taken from 60 subjects, concluding that such devices can be used to predict illness.

Continuous biosensor data, plus blood chemistry, gene expression and other tests,  were included. Participants wore 1-7 commercial wearables, which collected more than 250,000 measurements per day. Weight, heart rate, blood oxygen level, skin temperature, sleep, walking, biking and running, calories expended, acceleration, and exposure to gamma rays and X-rays were analyzed.

To individualize the process, both baseline and illness values were established for each person. It was possible to monitor deviations from normal, and associate those deviations with environmental, illness or other factors that affect health.  Deviation patterns correlated with specific health problems.  (The lead author was able to detect Lyme Disease in himself during the study.) Algorithms which spot these patterns could be used for future diagnostics or research.

ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis

 

 

Alexa solidifies NLP’s role in smart homes, cars. Is senior care next?

Facebooktwitterredditlinkedinmail

Amazon’s Alexa is the deserved  star of CES. Lights, thermostatsair purifiers, cars, refrigeratorsother appliances, and baby monitors are examples of interfaces solidifying the natural voice processing-driven future of the world.

Amazon now has the opportunity to enhance the lives of those aging in place.  Its development of senior citizen focused applications is lagging.  Alexa has the ability provide the social interaction, health monitoring, and memory triggers that many seniors need to live independently.  If caregivers were able to create customized questions and answers, specific user needs could be better addressed.

ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis

Ultra-flexible transistor for discreet, continuous health monitoring

Facebooktwitterredditlinkedinmail

Stanford professor Zhenan Bao‘s latest bioelectronic innovation has disrupted wearable technology as we know it.   The ultra-flexible transistor can be stretched to twice its length, without losing conductivity.  Conductors are confined inside an extremely thin, flexible polymer material, ideal for adhesive or tiny wearables. Digital health applications are unlimited —  providing discreet, continuous, and accurately monitoring.

According to Bao, “Transistors are the basic component of nearly all of the electronic devices that we use today. In the near future we will be able to make wearable electronics that are stretchable and able to conform to the human body.”

After 100 stretches, the transistors showed no signs of cracking and their conductivity reduced only very slightly.  This means that they could be attached to constantly moving body parts. As a demonstration, the technology was used in a simple electronic device worn around the knuckle of a finger that turned a small LED light on and off.

Professor Bao is the keynote speaker at Wearable Tech + Digital Health + NeuroTech Silicon Valley — to be held on February 7-8, 2017 at Stanford University, and co-sponsored by the Stanford Wearable Electronics Initiative.

ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis

Video games studied to treat late-life depression

Facebooktwitterredditlinkedinmail

UCSF’s Joaquin Anguera and UW’s Patricia Arean have published a study detailing the use of video games to treat late life depression. They claim that the EVO interface targets underlying cognitive issues associated with depression, and does not simply manage systems. The game, developed by Akili, is meant to improve focus and attention at a “basic neurological level.”

Players in the study displayed cognitive benefits (such as improved attention — a commonly reported challenge for depression suffers) compared to behavioral therapy, as well as improved mood and self-reported function.

Participants  played the game  for 20 minutes, five times per week, and met with a clinician once per week. The researchers noted that social contact of this nature can have a positive effect on mood.  This may have impacted results, and is not related to game playing.
ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  conference –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis.

Early registration rates available through Friday, January 6th

Sensor dramatically improves MRI resolution

Facebooktwitterredditlinkedinmail

ETH professor Klaas Prussmann has developed technology to improve MRI accuracy by detecting tiny changes in magnetic fields.

An MRI’s  strong magnetic field, which makes it difficult for sensors to detect up small details.  Prussmann’s integrated digital radio receiver addresses this by  decreasing background noise significantly.

In a recent paper, he said:  “In addition to boosting absolute sensitivity at high field, the reported approach also affords superior relative sensitivity. At the level of one part per trillion, it is competitive with the most sensitive low-field magnetometry techniques devised to-date.”

The sensor  was positioned in front of a patient’s chest while in the MRI. Data showed tiny, regular changes in the magnetic field, representing his heartbeat. The measurement curve is similar to an ECG,  although it measures the contraction of the heart rather than electrical conduction.  These changes were significantly smaller than the 7 tesla field strength of the MRI used in the experiment.

Thea technique also develops better contrast agents, which could lead to improved  nuclear magnetic resonance spectroscopy  in biological and chemical research.

Disrupting MRI will be a focus of Digital Health + NeuroTech Silicon Valley on February 7-8 at Stanford.  Mary Lou Jepsen will lead the discuss on on Wearable, MRI-like opto-electronics to detect and treat cancer, heart, and brain diseases, on February 7th at 11am.

 ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis.

Early registration rates available through Friday, January 6th

 

Non-invasive nanosystem detects disease in breath

Facebooktwitterredditlinkedinmail

Technion professor Hossam Haick has developed a nanosystem that can identify the breath signatures of many diseases, including kidney failure, lung cancer, Crohn’s disease, MS, prostate and ovarian cancer.  Each compound’s relative abundance in a person’s breath is assessed, and disease signatures are compared against healthy individuals.

In a recent study, using mass spectrometry analysis, specific compound signatures for 17 different diseases were identified. The breath of 1,400 people was sampled, using a sensory array of carbon nanotubes and gold particles to register the compound mix they exhaled. Algorithms determined the presence or absence of each disease.

Haick’s goal is for the system to be used to screen widely for disease, even among those with no symptoms, to allow earlier interventions.

ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis

Prosthesis-integrated sensor detects infections early

Facebooktwitterredditlinkedinmail

Infections in prostheses, for amputees, and in joint replacements, are common, often found too late, and can necessitate additional surgeries or worse complications.  Current detection methods include MRI, CT, and X-ray.

Ken Loh and UCSD colleagues have developed an infection detecting prosthesis coating + imaging technique that could be used at home or in a doctors office.  Prostheses are continuously monitored and quantitative diagnostic data about the extent and location of an infection is provided.

Enhanced ECT was used to measure the human tissue and prosthesis’ electrical properties using  electrical fields. An algorithm processed the data to allow physicians to reconstruct a predetermined area’s electrical properties, to reveal tissue, bone, and prosthesis health. Infection caused changes in the field, detected by ECT.

A thin-film sensor was sprayed onto a prosthesis to improve infection detection. The film is made of a conductive polymer matrix that is sensitive to pH, and carbon nanotubes, embedded in the matrix, to increase the material’s ability to conduct electricity more sensitively, regardless of the pH level. Infections caused by different microorganisms often change the local pH in human cells and affect their ability to conduct electricity.

ApplySci’s 6th  Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Sky Christopherson – Marcus Weldon – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis